

Welcome to repro-catalogue’s documentation!

Contents:

	Example usage
	Contents

	Overview

	Run analysis

	Check outputs

	Share outputs

	Getting started with catalogue
	Prerequisites

	Our first example

	FAQs
	Contents

	Running in the wrong order

	Intermediary data processing

	Randomness

Indices and tables

	Index

	Module Index

	Search Page

Example usage

Contents

	Overview

	Run analysis

	Check outputs

	Share outputs

Overview

Imagine that on a central sever we have a data repository

├── Data folder/
│ ├── database release 1/
│ ├── database release 2/
⋮ ⋮
│ └── version index

Elsewhere, in our user directory, perhaps on another computer, things look like this.

├── latest_data/
├── latest_code/
├── results/
│ ├── old_results_with_inputs_1/
│ ├── old_results_with_inputs_2/
│ └── latest_results/
├── catalogue_results/
│ ├── TIMESTAMP1.json
│ ├── TIMESTAMP2.json
│ ├── TIMESTAMP3.json
│ └── TIMESTAMP4.json

Run analysis

We’ve just made some minor tweaks to our code and now we want to run our analysis. Before we start running any of the scripts in our code folder, we run:

catalogue engage --input_data latest_data --code latest_code

Now we run whatever we need to perform our analysis. Immediately after finishing this we run:

catalogue disengage --input_data latest_data --output_data results/latest_results --code latest_code

This will produce the following file:

// catalogue_results/TIMESTAMP5.json
{
"timestamp" : {
 "engage": "<timestamp (of .lock)>",
 "disengage": "<timestamp (new)>"
 },
"input_data": {
 "latest_data" : "<hash of directory>"
 },
"output_data": {
 "results/latest results":{
 "summary.txt": "<hash of file>",
 "output.csv": "<hash of file>",
 "metadata.json": "<hash of file>"
 }
 },
"code" : {
 "latest_code": "<git commit hash>"
 }
}

Check outputs

Let’s suppose that between TIMESTAMP4 and TIMESTAMP5 we modified the code to output a further file summary.txt, but that otherwise nothing has changed. We would like to check that our file output.csv hasn’t changed but oops! We’ve just overwritten it. Luckily we can compare to the json at TIMESTAMP4.

catalogue compare \
 catalogue_results/TIMESTAMP4.json \
 catalogue_results/TIMESTAMP5.json

Let us also suppose that one of the other files generated by our analysis, metadata.json, includes a timestamp. The diff would look something like this:

results differ in 3 places:
=============================
timestamp
code
results/latest_results/metadata.json

results matched in 2 places:
==============================
input_data
results/latest_results/output.csv

results could not be compared in 1 places:
==
results/latest_results/summary.text

Of course this is what we want:

	The code has been updated to produce summary.txt, and the timestamps have changed

	Our data and results have not changed at all

	Our new file summary.txt could not be compared as that file was not present at TIMESTAMP4

Alternatively, let’s suppose that our changes to the code had affected our results, so that our output.csv file has changed. In that case catalogue would inform us of the problem without us having to permanently store the output of every analysis we run. The hashes alone would not be enough to recover the original TIMESTAMP4 version. But since we have recorded the timestamp, that information can help us track down the data version, and the git commit digest tells us exactly what version of the code is used, making it easier to try and reproduce those results should we wish to do so.

Share outputs

We can then send a zip file of the results to a colleague along with the hash json produced during the final analysis (TIMESTAMP5.json).

They can rerun the analysis and use catalogue to check that the json they received is the same as their own:

catalogue compare TIMESTAMP4.json

Getting started with catalogue

In this example, we’ll show you how to use the catalogue tool to check the reproducibility of a small analysis pipeline.
We want to make sure that we reliably get the same numerical result from our analysis before we pass our scripts along to a colleague, or publish a report that uses our results.
catalogue gives us a simple method that we can use to compare our results as we update our input data and our code.

Prerequisites

The catalogue tool requires a Python installation of version 3.6 or later.
If that is available, you can run

pip install repro-catalogue

from the command line to install the latest version of catalogue.

This example features scripts that are also written in Python.
The use of Python for the analysis is not essential - as long as the code is tracked with git, any language can be used.

Several points in this example show how to use git to version control your code.
If you haven’t used git before, it’s an incredibly useful tool for tracking changes in files.
We’ll give full explanations of the commands we need during the example, and if you want to find out more we highly recommend the Software Carpentry git lesson [https://swcarpentry.github.io/git-novice/].

We’ll also make use of the command line to run git, Python, and the catalogue tool itself.
We will explain the necessary commands as we go along, and you can check out chapters 1-3 of the Software Carpentry Unix shell lesson [http://swcarpentry.github.io/shell-novice/] if you’d like more details on any of the commands we use.
If you would rather create the folders and download files in an alternative way, feel free to do so :slightly_smiling_face:

And now, let’s walk through our first example!

Our first example

In this example, we’re going to generate an output file that contains some simple descriptive statistics of a birthweight dataset :baby:
The dataset consists of the birthweights of 42 babies, together with other information on the babies and their parents.

Setting up our project

We’ll set our project up inside a new folder - let’s create one called repro-catalogue-demo.

mkdir repro-catalogue-demo

Inside that folder, we’ll create three more.
One will contain the code, one will hold the data and the final folder will be used to store our results.
We’ll now move into the repro-catalogue-demo folder and create the new folders there.

cd repro-catalogue-demo
mkdir birthweight-data
mkdir birthweight-analysis
mkdir birthweight-results

Why three separate folders?
Our analysis code will be worked on regularly, and all changes to it should therefore be tracked using a version control system.
On the other hand, our data will not change (or only be changed very rarely).
The code that we write will depend on the structure of the dataset, but not on the exact values within it.
We can therefore treat changes to our code and data independently, and the separated folders help us to achieve this.
The same applies to our results - they are dependent on the input data and analysis code, but are not part of either grouping.
Keeping them separate helps us to pose questions such as “Our results have changed. Is this due to a change in our analysis method, or a change in our input data?”

Getting the data

The data that we’ll use in this example come from the University of Sheffield’s Maths and Statistics Help teaching datasets [https://www.sheffield.ac.uk/mash/statistics/datasets].
To download the data into our birthweight-data folder, run the following command (noting the single quotes)

curl 'https://www.sheffield.ac.uk/polopoly_fs/1.886038!/file/Birthweight_reduced_R.csv' --output birthweight-data/Birthweight_reduced_R.csv

or download the birthweight dataset in CSV format from the website [https://www.sheffield.ac.uk/mash/statistics/datasets] and manually save it to the birthweight-data folder.

If you open up the file in your preferred text editor, or view the output by running

cat birthweight-data/Birthweight_reduced_R.csv

you’ll see that there is one header row followed by 42 rows of data.
As the file is a csv, we can see commas are used to separate each value in the dataset.

Writing our first analysis script

The aim of this exercise is to generate a results file that contains some simple descriptive statistics about the birthweight dataset.
In our first iteration of this script, we’ll calculate the mean and standard deviation of the available birthweights and write both values to a file.
We’ll use Python to write this script, but other languages can be used if you prefer.

Our analysis will be stored in the birthweight-analysis folder, so let’s start by moving into that directory

cd birthweight-analysis

We want to track our analysis using git.
Before starting to prepare our analysis scripts, we’ll initialise a git repository in this folder.
We can do that by running the following command from the birthweight-analysis folder:

git init

With git now ready to use, we’ll prepare our analysis script.
Open a new file in your preferred text editor and copy in the contents of the code block below.
Once the code is in place, save the file to the birthweight-analysis folder with the filename birthweight-descriptive-stats.py.

import os # Utility commands for folder names etc.
import pandas as pd # Useful module for manipulating data in tables - known as data frames in Pandas

Read the birthweight data from the csv file (we use a relative path to specify the location of the file)
birthweights = pd.read_csv(os.path.join(os.getcwd(), "..", "birthweight-data", "Birthweight_reduced_R.csv"))

Print out the first few rows of the table (not part of the analysis itself, but it's useful to have a look)
print(birthweights.head())

Calculate the descriptive statistics that we are interested in
birthweight_average = birthweights["Birthweight"].mean()
birthweight_std_dev = birthweights["Birthweight"].std()

Create a new data frame that contains our summary statistics
outputs = pd.DataFrame({"average": [birthweight_average],
 "std dev": [birthweight_std_dev]})

Save the outputs to a new csv file
outputs.to_csv(os.path.join(os.getcwd(), "..", "birthweight-results", "descriptive-stats.csv"),
 index=False, # don't print indices to the output file
 float_format="%.3f") # print values to three decimal places

You’ll notice that we use a couple of Python packages in this script - pandas and os.
The os module is included by default with Python, but you may need to install pandas if you haven’t got it set up already.
If you need to, you can install pandas using pip (Python’s package manager) by running

pip install pandas

Tracking our changes with git

With our file ready, let’s now track it using our version control system, git.
We track changes in git via commits.
A commit is essentially a snapshot of a set of files at a moment in time.
A message and unique identifier (often called a SHA or hash) are attached to each commit.
You can think of a commit as a saved unit of work.
It’s good practice to commit whenever a set of related changes are complete - and as our initial version of the analysis script certainly meets that criteria, it’s time to commit our work.

Let’s take a look at git’s current status by running

git status

You should see something along the lines of this output:

On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 birthweight-descriptive-stats.py

We won’t focus on branches in this tutorial (if you’re curious, see Chapter 3 [https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell] of the Pro Git book); the following sections of the output are more relevant to us.
As expected, we don’t have any commits yet.
However, git has detected that a new file is present in the birthweight-analysis folder.
We need to let git know that it is supposed to track this file, which we do with the following command:

git add birthweight-descriptive-stats.py

If we run git status again, we can see that the output has changed:

On branch master

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: birthweight-descriptive-stats.py

git has recognised that we’ve added a new file, and we can now commit that change.
Our commit will contain changes to all files listed in the Changes to be committed: section.
Let’s now commit those changes (we use the -m option to pass a message to the commit command) and then inspect our commit.

git commit -m "Add first version of analysis script"
git log

The output of git log will show some details about the commit: the author, date, commit message and - importantly for our use of catalogue later on - the unique commit identifier.

Checking the script

Now, let’s do a trial run of the script to make sure everything works as expected before we move on.

python birthweight-descriptive-stats.py

Once it’s done, we can have a look at our outputs.
We can either print the file out at the command line with

cat ../birthweight-results/descriptive-stats.csv

or by navigating to the birthweight-results folder in a file browser and opening the descriptive-stats.csv file from there.

Using catalogue

Now, let’s start using catalogue to track our results.
Later on, we’ll start to make changes to different aspects of this example and we want to understand the impact of those changes as we proceed.

To start using catalogue, we need to specify the folders that contain our data and our code as we call the utility

catalogue engage --input_data ../birthweight-data --code .

As our current working directory is the birthweight-analysis folder, we give a relative path to the data folder and pass our current directory as the code folder.
We should receive the following output:

'catalogue engage' succeeded. Proceed with analysis

We can now run our analysis scripts, using whichever tools we like.
For our case, we run the Python script we wrote earlier.

python birthweight-descriptive-stats.py

Once our analysis is complete (which could involve several steps if we have a more complex pipeline), we can disengage the catalogue tool.
As before, we provide the location of our input data and code, and this time we also provide the location of our output files.

catalogue disengage --input_data ../birthweight-data --code . --output_data ../birthweight-results

Running the disengage command should provide some output:

NOTE we expect the timestamp hashes to differ.

hashes differ in 1 places:
===========================
timestamp

hashes match in 2 places:
==========================
input_data
code

hashes could not be compared in 1 places:
==
../birthweight-results/descriptive-stats.csv

The hashes that the output refers to are mappings of the contents of the relevant files to a unique string.
If two files are the same, the hashes of those files will also be the same.
If the files differ, even by a single character, their hashes will be different.

The output from catalogue disengage utilises the hashes of the files that we provided as options to catalogue engage and catalogue disengage.

	timestamp is generated by catalogue itself - it records the time at which engage and disengage occurred. As these two commands can’t be performed at exactly the same time, their hashes will always differ.

	Our input data and code did not change in the time between when catalogue engage and catalogue disengage were ran.

	Our results were generated while we were using the catalogue tool, so a before/after comparison cannot be performed.
The hashes themselves can be seen in the timestamped .json file in newly-generated catalogue_results folder.
You can open that file in a text editor, of view the contents with

cat catalogue_results/20200518-184447.json

Note that the exact name of your file will be different as it will have been generated at a different time.

This process is useful for making sure that we didn’t unintentionally made changes to our input data or code as we ran our analysis pipeline.
When we run catalogue engage, the tool checks all changes to the code have been committed to our version control system.
This ensures that we have a record of the code that was run.
However, the real utility of catalogue becomes apparent when we re-run our analysis after making changes to the code.

Modifying the analysis script

We’ll now illustrate how catalogue can be used to highlight the effects changes to different parts of our analysis pipeline.
In our typical workflow, some changes will have knock-on effects:

	Changing our input data (e.g. moving from a trial dataset to the full one)

	Altering our analysis technique

	Saving more outputs from our pipeline

while others won’t (or rather, shouldn’t!):

	Refactoring our code for speed or clarity

	Reorganising our file structure

We’ll now see how we can use catalogue to make sure that some simple changes to our pipeline have the expected effects.

Refactoring the code

Let’s start with a small amount of refactoring.
In our analysis script, there is one command which prints a few entries of our dataset to the screen.
We’ll now remove that statement (in a slightly contrived example of how to tidy up our code!).
Open up your birthweight-descriptive-stats.py file, and remove the print() statement (which should be on line 8).
Save the file and close your editor, then run

catalogue engage --input_data ../birthweight-data --code .

Unlike last time, you should see a warning message

Working directory contains uncommitted changes.
Do you want to stage and commit all changes? (y/[n])

We haven’t committed our changes, so we have no record of what we’ve just done in our version control system.
If we type y, catalogue handles the add and commit process for us; alternatively, we can select n and run git add and git commit as we did earlier in this walkthrough to track our changes.
If you like, run git status and git log to see the latest commit, before running the command to engage catalogue again.

With catalogue now engaged, we can run our analysis with

python birthweight-descriptive-stats.py

We won’t see the output to the screen this time, but no other changes should have occurred.
If we disengage with

catalogue disengage --input_data ../birthweight-data --code . --output_data ../birthweight-results

we get the same output as we did the previous time.

Now, let’s compare our outputs on the two occasions.
The file that contains our results is overwritten each time we call our anaysis script, but we can still use catalogue to compare the results.
We can see what catalogue has recorded by listing the files in the catalogue_results directory.

ls catalogue_results

Two .json files will be listed, with different timestamps - these are from the two occasions we have used catalogue.
We can compare the contents of the two files with

catalogue compare catalogue_results/20200518-184447.json catalogue_results/20200519-141323.json

Note that the timestamps used in your filenames will be different.
The comparison should yield

NOTE we expect the timestamp hashes to differ.

hashes differ in 2 places:
===========================
timestamp
code

hashes match in 2 places:
==========================
input_data
../birthweight-results/descriptive-stats.csv

hashes could not be compared in 0 places:
==

In this case, we can see that our timestamp and code have changed between the two occasions on which we ran catalogue.
The timestamp is different due to the times at which we ran the tool, and we made the changes to the code ourselves.
The hashes of our input data folder (birthweight-data) and the files within our output data folder (birthweight-results) have not changed, giving us confidence that our small refactoring has not changed any of the functionality of our code.

Modifying the data

Let’s now try a different case, by altering our input data slightly.
This might happen when we receive a new version of a data file.
We’ll mimic this by adding a new record to the birthweight dataset.

Open up the data file (birthweight-data/Birthweight_reduced_R.csv), and add the following line to the end of the file:

2137,14,20,7.30,40,1,22,17,62,104,32,12,25,68,0,0,Normal

Then save the file.
We’ll then run our pipeline using catalogue to track the files that are used and generated, and then compare with our previous run:

catalogue engage --input_data ../birthweight-data --code .
python birthweight-descriptive-stats.py
catalogue disengage --input_data ../birthweight-data --code . --output_data ../birthweight-results
catalogue compare catalogue_results/20200519-141323.json catalogue_results/20200519-173928.json

Again, noting that your timestamps will be different from those above (you can use ls catalogue_results to see the available timestamps).
The output will let us know where the differences in our pipeline arose:

NOTE we expect the timestamp hashes to differ.

hashes differ in 3 places:
===========================
timestamp
input_data
../birthweight-results/descriptive-stats.csv

hashes match in 1 places:
==========================
code

hashes could not be compared in 0 places:
==

The output reports that our code is unchanged, and (most crucially) informs us that both our input data and our results files have changed.
If we were trying to track down why we were getting a different set of results, this report from catalogue would help us narrow it down to a change in the data as opposed to something having been changed in the code.

And with that, we’ve come to the end of our first example!
In this walkthrough, we’ve covered the main features of catalogue and shown how it can be used in a simple analysis pipeline.
We have discussed how it can be used to highlight changes in the data, code and outputs, but have only lightly touched on the many facets of reproducibility that often come up during analysis projects.
In our next example, we’ll take a closer look at some of the more common challenges in making your project reproducible, and how catalogue can help in that process.

FAQs

Contents

	Running in the wrong order

	Intermediary data processing

	Randomness

Running in the wrong order

The commands catalogue engage and catalogue disengage are meant to be run in that order.

The catalogue engage command will check that a .lock file does not exist. If it does, it will warn:

Already engaged (.lock file exists). To disengage run 'catalogue disengage...
See 'catalogue disengage --help' for details

The catalogue disengage command will check that a .lock file exists. If it doesn’t, it will warn:

Not currently engaged (could not find .lock file). To engage run 'catalogue engage...
See 'catalogue engage --help' for details

Intermediary data processing

It is likely that the analysis includes some preprocessing steps. Ideally all of this preprocessing would be run automatically in synchrony with the rest of our code. In that case we consider it output data, and it should be contained in the output_data folder.

Randomness

Comparing two hashes tells you whether the hashed items are the same or different. This process cannot tell you if something is almost the same. If your analysis is non-deterministic, you will get a different hash every time.

There are several ways by which an analysis can be non-deterministic. One of the most common is the user of random numbers.
To deal with this, we recommend setting a random seed. Whatever language you’re using should be able to provide you with documentation on how to do this - see, for example, the documentation for Python [https://docs.python.org/3/library/random.html#random.seed].

Hashing tells you whether something is the same, or different. It cannot tell you if something is almost the same. If your analysis is non-deterministic, you will be getting a different hash every time. To deal with this, we recommend setting a random seed. Whatever language you’re using should be able to provide you with documentation on how to do this.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to repro-catalogue’s documentation!

 		
 Example usage

 		
 Contents

 		
 Overview

 		
 Run analysis

 		
 Check outputs

 		
 Share outputs

 		
 Getting started with catalogue

 		
 Prerequisites

 		
 Our first example

 		
 Setting up our project

 		
 Getting the data

 		
 Writing our first analysis script

 		
 Tracking our changes with git

 		
 Checking the script

 		
 Using catalogue

 		
 Modifying the analysis script

 		
 FAQs

 		
 Contents

 		
 Running in the wrong order

 		
 Intermediary data processing

 		
 Randomness

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

